627 research outputs found

    Gauge choices and Entanglement Entropy of two dimensional lattice gauge fields

    Full text link
    In this paper, we explore the question of how different gauge choices in a gauge theory affect the tensor product structure of the Hilbert space in configuration space. In particular, we study the Coulomb gauge and observe that the naive gauge potential degrees of freedom cease to be local operators as soon as we impose the Dirac brackets. We construct new local set of operators and compute the entanglement entropy according to this algebra in 2+12+1 dimensions. We find that our proposal would lead to an entanglement entropy that behave very similar to a single scalar degree of freedom if we do not include further centers, but approaches that of a gauge field if we include non-trivial centers. We explore also the situation where the gauge field is Higgsed, and construct a local operator algebra that again requires some deformation. This should give us some insight into interpreting the entanglement entropy in generic gauge theories and perhaps also in gravitational theories.Comment: 38 pages,25 figure

    Revisiting Entanglement Entropy of Lattice Gauge Theories

    Get PDF
    Casini et al raise the issue that the entanglement entropy in gauge theories is ambiguous because its definition depends on the choice of the boundary between two regions.; even a small change in the boundary could annihilate the otherwise finite topological entanglement entropy between two regions. In this article, we first show that the topological entanglement entropy in the Kitaev model which is not a true gauge theory, is free of ambiguity. Then, we give a physical interpretation, from the perspectives of what can be measured in an experiement, to the purported ambiguity of true gauge theories, where the topological entanglement arises as redundancy in counting the degrees of freedom along the boundary separating two regions. We generalize these discussions to non-Abelian gauge theories.Comment: 15 pages, 3 figure

    Universal symmetry-protected topological invariants for symmetry-protected topological states

    Full text link
    Symmetry-protected topological (SPT) states are short-range entangled states with a symmetry G. They belong to a new class of quantum states of matter which are classified by the group cohomology Hd+1(G,R/Z)H^{d+1}(G,\mathbb{R}/\mathbb{Z}) in d-dimensional space. In this paper, we propose a class of symmetry- protected topological invariants that may allow us to fully characterize SPT states with a symmetry group G (ie allow us to measure the cocycles in Hd+1(G,R/Z)H^{d+1}(G,\mathbb{R}/\mathbb{Z}) that characterize the SPT states). We give an explicit and detailed construction of symmetry-protected topological invariants for 2+1D SPT states. Such a construction can be directly generalized to other dimensions.Comment: 12 pages, 11 figures. Added reference

    Quantized topological terms in weak-coupling gauge theories with symmetry and their connection to symmetry enriched topological phases

    Full text link
    We study the quantized topological terms in a weak-coupling gauge theory with gauge group GgG_g and a global symmetry GsG_s in dd space-time dimensions. We show that the quantized topological terms are classified by a pair (G,Ξ½d)(G,\nu_d), where GG is an extension of GsG_s by GgG_g and Ξ½d\nu_d an element in group cohomology \cH^d(G,\R/\Z). When d=3d=3 and/or when GgG_g is finite, the weak-coupling gauge theories with quantized topological terms describe gapped symmetry enriched topological (SET) phases (i.e. gapped long-range entangled phases with symmetry). Thus, those SET phases are classified by \cH^d(G,\R/\Z), where G/Gg=GsG/G_g=G_s. We also apply our theory to a simple case Gs=Gg=Z2G_s=G_g=Z_2, which leads to 12 different SET phases in 2+1D, where quasiparticles have different patterns of fractional Gs=Z2G_s=Z_2 quantum numbers and fractional statistics. If the weak-coupling gauge theories are gapless, then the different quantized topological terms may describe different gapless phases of the gauge theories with a symmetry GsG_s, which may lead to different fractionalizations of GsG_s quantum numbers and different fractional statistics (if in 2+1D).Comment: 13 pages, 2 figures, PRB accepted version with added clarification on obtaining G_s charge for a given PSG with non-trivial topological terms. arXiv admin note: text overlap with arXiv:1301.767
    • …
    corecore